
RAPID: Rapid and Precise Interpretable Decision
Sets

Sunny Dhamnani∗, Dhruv Singal†, Ritwik Sinha‡, M Tharun§ and Manish Dash¶
∗Adobe Research, Bangalore, India

†Columbia University, New York, USA
‡Adobe Research, San Jose, USA
§Adobe Systems, Noida, India
¶IBM, Bangalore, India

Email: {dhamnani.sunny, manishdash12}@gmail.com, {risinha, tharun}@adobe.com, dhruv.singal@columbia.edu

Abstract—Interpretable Decision Sets (IDS) is an approach
to building transparent and interpretable supervised machine
learning models. Unfortunately, IDS does not scale to most
commonly encountered big data sets. In this paper, we propose
Rapid And Precise Interpretable Decision Sets (RAPID), a faster
alternative to IDS. We use the existing formulation of decision
set learning and propose a time-efficient learning framework.
RAPID has two major improvements over IDS. First, it uses a
linear-time randomized Unconstrained Submodular Maximiza-
tion algorithm to optimize the objective function. Second, we
design special data structures, based on Frequent-Pattern (FP)
trees to achieve better computational efficiency. In this work,
we first perform a time complexity analysis of IDS and RAPID,
and show the significant advantages of the proposed method.
Next we run our algorithm, along with baselines, on three public
datasets. We show comparable accuracy for RAPID, with 10,000x
improvement in running time over IDS. Additionally, due to
the significant improvements in running time of RAPID, we can
run more extensive hyperparameter search algorithms, leading
to comparable accuracy with competitive baseline models.

Index Terms—big data, interpretable, supervised machine
learning, decision rules

I. INTRODUCTION

Machine Learning (ML) models have achieved a significant
position within our world, everything from loan approvals to
objects detection within images are based on such models.
ML and statistical models have served one of two purposes
[1], to classify a data point, or explain an observation. Both
explanation and classification serve important roles, but in
more recent years, the role of classification or prediction has
been a more dominant theme within computer science research
[2]. Large black-box models have dominated these tasks. For
instance, it has been noticed that the best models (with respect
to classification accuracy), over hundreds of datasets are not
easily interpreted [3]. While this trend towards large models
has been motivated by the push to increase the prediction
accuracy of these tasks, a casualty of this is the fact that
humans who work with these models often fail to understand
why a model took the decision that it did.

More recently, this challenge has led to an effort to try to
provide interpretability to machine learning models, especially
for those dealing with big data systems [4]. The authors
in this paper argue that interpretable models help in these

following ways. First, they help build systems that are safe,
and are taking sound decisions. Second, it helps to debug these
systems. Third, it helps science by helping human knowledge
understand something it did not know before. Fourth, it helps
overcome issues with mismatched objectives and trade-offs
due to having multiple objectives. Finally, it helps address the
potential to identify legal and ethical boundaries an automated
decision system may be crossing. Large scale black-box ML
algorithms that take automated decisions about human lives
using big data have received increased scrutiny.

Interpretable Decision Sets (IDS) [5] extends decision trees
and decision lists via itemset mining. All of which are su-
pervised ML models that are interpretable by design. IDS
provides a framework that constructs an objective function
composed of terms that assign importance to both accuracy
and interpretability. It generates transparent ML models and
is shown to achieve interpretability when shown to human
end-users of the model. It also achieves this with almost no
loss of accuracy, compared to the best predictive models.
Unfortunately, the proposal is extremely slow and fails to scale
to big data (for example, in our experiments, IDS failed when
the dataset had more than a few thousand rows). This limits the
applicability of IDS to big data applications that are ubiquitous
today.

The main contribution of this work is the proposal of
RAPID, an approach that enables interpretable ML on big
data. First, we analyze the time complexity of IDS. Next,
introducing tailor-made data structures and adopting a state
of the art unconstrained submodular maximization routine, we
accelerate the process of obtaining interpretable decision sets.
We further analyze the time complexity of RAPID, and show
the improvements over IDS. Improved run times for RAPID
enables us to use more extensive hyper-parameter search.
Finally, we test the accuracy and run time of RAPID and
comparing it with IDS and other approaches on three publicly
available datasets.

Next, the literature related to this work is discussed.

II. RELATED WORK

In large areas of ML application, the data is a collection of
observations of human behavior. Important examples include

1

medicine and social sciences (like education, justice systems
and marketing). In such areas, recent effort has involved
building ML models which satisfy interpretability, instead of
performing an ex post approximation of the best black-box
model [4].

While providing interpretation as a post-processing task
especially for deep neural network models has received much
attention [6]–[9], these models typically fall short of providing
a fully “transparent” explanation of model predictions [10].
This is primarily because these are generally model agnostic
approaches in which the explanations are completely disjoint
from the model. For example, LIME [11] and Anchors [12]
provide a generic framework to generate local explanations
to black-box models in a model-agnostic manner. However, a
local interpretation is often limited in its applicability when
the goal is to get a broad understanding of the model. In big
data applications where predictions are being generated for
millions of observations, a locally interpretable model does
not provide a scalable model exploration framework.

Furthermore, there are other works that argue for interpre-
tation through examples. In this approach, the functioning
of a model is described by identifying specific datapoints.
Some studies focus on generating counterfactual explanations
[13], [14], where the goal is to identify minimal changes
required to change the model’s prediction. Another study
[15] attempts to find a small number of representative data
instances; scrutinizing outcomes of these instances can aid
in understanding the working of a model. However, such
approaches are often not suitable for big data applications with
tabular data, where a data point can comprise of hundreds or
even thousands of imperceptible features.

In particular, big data research is increasingly looking
towards methods which incorporate interpretability intrinsi-
cally in predictive models. For example, [16] propose using
interpretable features to augment the performance of auto-
mated algorithms in malicious activity detection in enterprise
security (which typically entails sifting through millions of
data records). To generate the interpretable features, they
use itemset mining implicit in the RIPPER [17] algorithm,
showing superior recall on comparison with other feature
generation techniques (which do not promise interpretability).
Similarly, an active area of study for building interpretable
ML models uses decision sets [5]. This extends the areas of
Decision Trees [18], [19] and Decision Lists [20], [21]. De-
cision Trees and Decision Lists [22] are naturally transparent
because the model’s decision process for a given data point
can be understood by either tracing the path along the tree or
identifying the right rule from a list.

However, algorithms based on such techniques only have
practical applicability as long as they are efficient and are able
to scale to big data systems. Naturally, scaling such approaches
has been a focus of ongoing research efforts [23], [24]. The
first of these provides substantial reduction in the search space
for candidate pattern sequences in a high utility sequential
pattern mining setting, while second introduces novel pruning
techniques and augmented pattern-growth tree data structures

to perform weighted frequent itemset mining efficiently. Our
work adds to this literature by leveraging heuristics involving
reducing the search space and augmented pattern growth data
structures to improve the efficiency of a leading interpretable
ML model which uses decision sets, namely, IDS [5].

IDS is a joint framework for building predictive models that
are accurate, but also interpretable. IDS provides a flexible
system for achieving this objective and satisfies the simulta-
neous objectives of accuracy and interpretation. IDS shows im-
provements over Bayesian Decision Lists [20], CN2 [25] and
Classification Based on Associations (CBA) [26]. In ablation
and human judgment studies, the models generated by IDS are
also shown to be interpretable. While IDS is clearly shown to
achieve the required benchmark for human interpretability, the
solution to building interpretable decision sets fails to scale to
a number of problems where this approach is very applicable
and likely to bring value. The largest example datasets in [5]
are of the size of 150, 000 data points. This is a grossly small
dataset in many problems that are of interest to data science.
Datasets in big data applications can easily scale to millions
or billions of points, with tens or hundreds of attributes. One
bottle neck in IDS stems from the use of the Smooth Local
Search algorithm [27] for optimizing the algorithm. The run
time of this algorithm is quadratic in the number of input rules.
Additionally, IDS fails to achieve other optimizations that may
be gleaned by leveraging the characteristics of the problem at
hand. The next section describes IDS in some detail.

A. Interpretable Decision Sets

IDS generates an interpretable classification model for
multi-class classification tasks, without sacrificing accuracy
significantly. In this section, we review the notation and
describe the framework of IDS.

Fig. 1: An illustrative example of a decision set containing two
rules. Predicates are presented in bold and the output labels
are in red or blue.

Central to IDS is a decision set, defined as a collection of
classification rules, statements of the form “if-then”. Figure 1
provides an example. Note that a decision set does not have to
be exhaustive; a default class is the decision for observations
that fail to meet any rule. We have summarized the terms and
notation in Table I. Many of these are common to [5] and we
introduce a few additional terms for easier exposition.

Decision sets are easy to comprehend because when consid-
ering a rule, reasoning about all the other rules is not required.
Decision sets are defined in terms of itemsets. Rules in a
decision set are independent and applied individually to an
itemset. An itemset s is a conjunction of predicates of the
form (attribute, operator, value), for example, (x1 < 8). We
say x satisfies s when all the predicates in s output True when
evaluated on x. Further a rule r is a tuple of itemset s and
class label c, that is, r = (s, c).

2

TABLE I: Summary of notation

Notation Description

D Dataset {(x1, y1), ..., (xN , yN)}
x Observed attribute values of a data point
y Class label of a data point
N Number of data points
M Number of features associated with each x

C Set of class labels in D
c A particular class label from C
p A predicate (attribute-operator-value tuple), e.g., Age ≥ 50
s An itemset (conjunction of one or more predicates),

e.g., Age ≥ 50 and Gender = Female
S Input set of itemsets
r A rule – an itemset-class pair (s, c)

k Size of input rule-set, S × C
Lmax Maximum rule length, across all rules in S × C
R Decision set – a set of rules (s1, c1), ..., (sk, ck)

TABLE II: Objective terms (from [5])

Objective Formula

Set size f1(R) = k − size(R)

Rule length f2(R) = Lmax · k −
∑

r∈R length(r)

Overlap f3(R) = N · k2 −
∑

ri,rj∈R;ci=cj
overlapD(ri, rj)

Overlap f4(R) = N · k2 −
∑

ri,rj∈R;ci 6=cj
overlapD(ri, rj)

Coverage f5(R) =
∑

c′∈C 1(∃r = (s, c) ∈ R s.t. c = c′)

Precision f6(R) = N · k −
∑

r∈R |incorrect-coverD(r)|
Recall f7(R) =

∑
(x,y)∈D 1 {∃r s.t. (x, y) ∈ correct-coverD(r)}

Following [5], a decision set R assigns a class label c to
attribute values x as follows. If x satisfies exactly one itemset
si, then its class label is ci. If x satisfies zero itemsets then its
class label is assigned using a default label, and if x satisfies
more than one itemset, it is assigned a class using a tie-
breaking function. The choice of default class label and class
tie-breaking function is up to the user. For our experiments,
we report results with the following choices. For data points
that satisfy no itemsets, we predict the majority class label in
the training data, and for data points that satisfy more than one
itemset, we predict using the rule with the highest F1-score on
the training data. However, other choices of default class labels
and class tie-breaking functions can be easily incorporated.
For example, we could use the smallest minority class as the
default label.

B. Objective Function

IDS proposes a joint objective that scores decision sets
based on how interpretable and how accurate they are. The
objective is composed of non-negative reward functions, some
of these reward explainability while others reward accuracy.
The functions are summarized in Table II. We elaborate on
these reward functions next.

1) Explainability: The following five terms reward decision
sets which are explainable.

a) Set size: Decision sets with smaller size are favoured.
Here, size(R) is the size of decision set R.

b) Rule length: Shorter rules are more desirable for inter-
pretability. Here length(r) for rule r = (s, c) is the
number of predicates in s.

c) Overlap (two terms): A pair of objective terms to re-
ward decision sets with rules that do not overlap in
the feature space. coverD(r) denotes the set of data
points in D which satisfy the itemset used in r. Further,
overlapD(ri, rj) is the number of points in D which are
covered by both rules ri and rj .

d) Class coverage: This term in the objective function is
used to encourage the decision set to have at least one
rule that predicts each class.

2) Accuracy: The next two terms reward accuracy of the
classifier.

1) Precision is encouraged by penalizing rules for mis-
classification. This objective is formalized by defining
incorrect-coverD(r), which is the set of points in D which
are incorrectly classified by rule r ≡ (s, c), that is, the
set of points which satisfy the itemset s but which have a
different class label than class label c. Smaller incorrect
cover is favored to promote precision.

2) Recall is encouraged by defining correct-coverD(r),
which is the set of points in D that are correctly classified
by rule r ≡ (s, c), that is, the set of points which satisfy
the itemset s and whose class label is identical to the class
label c. Decision sets which correctly cover data points
with at least one rule, are favored to increase recall.

The full learning objective is constructed by combing the
seven reward functions in the following manner,

f((λ1, λ2, · · · , λ7),R) =

7∑
i=1

λifi(R), (1)

where λ1, λ2 · · · , λ7 are non-negative weights that scale the
relative importance of the terms. The final decision set is given
by

argmax
R⊆S×C

f((λ1, λ2, · · · , λ7),R)

The learning objective is maximized using the Smooth Local
Search algorithm [27], which is an unconstrained submodular
maximization method. The algorithm to finding an optimal
decision set involves starting with the empty set and adding
to it, each time computing the objective function for a decision
set, and updated several times within in each iteration.

III. TIME COMPLEXITY OF IDS

A precursor to running IDS is to get a set of candidate
sets to choose from. IDS proposes using Frequent Itemset
Mining (FIM) algorithms [28] like Apriori [29] with a support
threshold of (ε · |D|), to ensure that the candidate itemsets are
present in at least ε proportion of data points. The output of
an FIM algorithm is the set of the form S.

3

TABLE III: Time complexity of objective terms in IDS

Objective Function Complexity

Set size (f1) Θ(1)

Rule length (f2) Θ(k)

Overlap (f3) Θ(|R|2 ·N · (M + logN))

Overlap (f4) Θ(|R|2 ·N · (M + logN))

Coverage (f5) Θ(|R|)
Precision (f6) Θ(|R| ·N ·M)

Recall (f7) Θ(|R| ·N · (M + logN))

For the time complexity of the overall algorithm, we mul-
tiply the time complexity associated with objective function
evaluation with number of times this function evaluation
routine is invoked. Note that the analysis is entirely based on
implementation code as released by the authors of IDS [30].

We first describe the time complexity of all the terms in the
objective, summarized in Table III. Function f1 computes the
difference in size between the input rule set and the decision
set, a constant time operation. Function f2 iterates over the
input rule set S × C to find Lmax, and then iterates over
R to sum the length of all rules. Since |R| ≤ k, the time
complexity of f2 is Θ(k). The functions f3 and f4, compute
overlap between a pair of distinct rules from R, based on the
class of the rules. These functions iterate over pairs of rules
(|R| × |R|), and for each pair they sort the data points in
Θ(N logN) time and find which of the N rows are covered
in Θ(NM) time. The function f5 iterates over R to find the
number of classes covered by this decision set.

The function f6 calculates size of incorrect cover by it-
erating over each rule in R. In each iteration, rows which
are incorrectly covered by a particular rule are determined
in Θ(N · M) time. The last function, f7, finds the number
of points which are correctly covered by at least one rule in
decision set R. The function iterates over each rule in R, and
in each iteration, sorts the data points in Θ(N logN) time,
and finds which of the N rows satisfy the rule in Θ(NM)
time.

Hence, the time complexity of computing the objective
function Tf for a decision set R is given as,

Tf = Θ(|R|2 ·N · (M + logN)). (2)

Next, we consider the number of times the objective func-
tion is computed in the SLS algorithm. The objective function
is first invoked to compute the estimate of the optimal value of
the objective OPT and then iteratively over each successive
candidate rule set. Consider TOPT , the time complexity of
computing OPT . Here, f is evaluated for a decision set of
size k/2, hence we can replace |R| with k in Equation (2).

TOPT = Θ(k2 ·N · (M + logN)), (3)

Next consider Tloop, the total time spent iterating over the
candidate rule sets. The ith iteration evaluates the objective
function for some decision set Ri, therefore using equation
(2),

Tloop =
∑
i

Θ(|Ri|2 ·N · (M + logN)). (4)

Say that the maximum size of decision set attained across all
the iterations is Rmax. Also, we know that maximum number
of iterations is O(k2) [31], leading to the upper bound in time
complexity of,

Tloop = O(k2 · |Rmax|2 ·N · (M + logN)). (5)

Note that the decision set is initialized with the empty set φ.
Since the size of decision set increases by a single unit in
each iteration, reaching Rmax will involve computations on
decision sets of sizes 0, 1, 2, . . . ,Rmax. Thus, a lower bound
for Equation (4) can be calculated as follows, using the fact
that

∑n
i=1 i

2 = (n(n+ 1)(2n+ 1))/6,

Tloop = Ω(|Rmax|3 ·N · (M + logN)). (6)

The overall time complexity of IDS, Toverall, is the sum of
Tfim (cost of finding itemsets in the dataset), TOPT and Tloop,
that is,

Toverall = Tfim + TOPT + Tloop. (7)

From Equations (3), (5) and (7) we see that the upper bound
in the time complexity of IDS is

Toverall = O(k2 · |Rmax|2 ·N · (M + logN)) + Tfim. (8)

From Equations (3), (6) and (7), we see that the lower bound
for this time complexity is

Toverall = Ω((k2 + |Rmax|3) ·N · (M +logN))+Tfim. (9)

IV. RAPID AND PRECISE INTERPRETABLE DECISION SETS

A key parameter in IDS is the threshold ε to run FIM.
A lower ε will lead to a larger S, implying a bigger value
of k (|S|). The lower bound of the time complexity of IDS
involves k2 operations and is multiplied by N logN . For most
classification problems on big data today, N ranges from
hundreds of thousands to billions. Also, for most practical
problems in real datasets, ε is conservatively chosen as 0.1
(10% of the dataset). With tens of attributes, this often leads to
tens of thousands of itemsets in S. This renders IDS not viable
in realistic scenarios. For example, using the author-supplied
code from IDS [30], the largest dataset we were able to analyze
with IDS1 had a mere 2, 000 data points, 10 attributes, and
ε = 0.1. This motivates the need to rethink IDS, to make it
usable to build interpretable ML models for modern problems.

In Section II-A, we saw that IDS starts with an input of
itemsets generated by the Apriori algorithm. It then calculates
the objective function f on rule sets in a direct manner,
to compute the set size, rule length, overlap (between pairs
of rules), prediction for all classes, precision, and correct
cover. Calls to this function are then incorporated within each
iteration of the SLS algorithm. In this work, we propose
the Rapid and Precise Interpretable Decision Sets (RAPID)
algorithm, which improves over IDS in three ways. First,
we leverage FIM algorithms that perform better than Apriori.
Second, RAPID is based on a better unconstrained submodular

1On a Linux machine with 61 GB of memory and running an Intel Xeon
E5-2686 v4 8 Core Broadwell Processor with base frequency of 2.3 GHz.

4

maximization algorithm, when compared to SLS which is used
by IDS. Third, the computational efficiency of the reward
functions of IDS can be significantly improved.

A. Frequent Itemset Mining
IDS proposes using the Apriori algorithm to generate the in-

put itemset, S. While Apriori was the first algorithm proposed
to generate frequent itemsets [29], it has been superseded in
efficiency by multiple newer proposals like Frequent Pattern
Growth (FP-Growth), Linear time Closed item set Miner
(LCM), and Eclat [28], [32], [33]. It has been empirically
shown that FP-Growth has orders of magnitudes lower running
times than the Apriori algorithm [34].

We further improve the computational efficiency of candi-
date set generation by selecting a narrower set of candidate
rules for each class c. The input itemset Sc is obtained by
running FIM only on transactions for class (c) (using a relative
threshold ratio of ε). This is as opposed to mining rules on the
whole transaction database and taking a cross product with the
set of all classes (S×C). The set over which we optimize f is
then simply formed by combining all such candidate sets, that
is, X = ∪c(Sc, c). The motivation for this is that, certain rules
(s) will be so rare for certain classes (c), that the corresponding
rule (s, c) is not a valuable candidate rule to consider in the
decision set. This helps us shrink the size of the input itemset,
in practice.

B. Unconstrained Submodular Maximization
Maximization of submodular functions is a known NP-Hard

problem. It has however been shown that it admits a 1/2-
approximate algorithm [27]. However, the randomized SLS
algorithm, proposed in [27] achieves a 2/5-approximation.
IDS leverages this algorithm to maximize its objective func-
tion. In more recent work [35], a 1/2-approximate algorithm
for the unconstrained submodular maximization problem has
been proposed, we shall refer to this algorithm as USM. This
achieves a tight approximation guarantee matching the known
hardness of this problem of 1/2 [27].

USM has another important advantage over SLS, for our
problem. It is a linear time randomized algorithm (linear in k,
the number of rules in the input itemset), compared to SLS,
which is O(k2). An interesting thing to note about USM is
that it finds the (approximately) optimal set incrementally– a
rule once added, is never removed from the set, a property
that SLS lacks.

C. Frequent Itemset Counts and FP-Trees
Finally, we speed up the reward function calculation. We

create data structures to aid us in optimizing the most compu-
tationally intensive reward functions, namely overlap between
rules (within class and across classes, components of f3 and
f4), correct cover for the rule set and incorrect cover for each
rule in the rule set (components of f6 and f7). We explain the
formation of these data structures – frequent itemset counts
and FP-Trees in the following discussion.

Support on the transaction database is the outcome of any
FIM algorithm. Hence, we simply store the support counts

for frequent itemsets of Sc in a hash map (with the itemsets
being the keys, to allow for an O(1) access). We name the
data structures storing the class-wise frequent itemset counts as
{Fc}. Further, we also perform FIM on the complete (global)
transaction database (ignoring the class information), and store
the counts in another data structure G (again, as a hash map).
We use an absolute support threshold for the global mining
operation. In practice, we run FIM on Sc with a threshold of
ε·|Sc|, the minimum of these counts across all classes is halved
to get the threshold for the global FIM. Hence, any itemset
which is present in any one of {Fc} will also be present in
G. Moreover, G will have some extra itemsets, which are not
present in any of {Fc}.

Frequent Pattern Trees (FP-Trees) are special suffix trees
introduced in the FP-Growth algorithm [32], the leading FIM
algorithm today. It is a compressed representation of frequent
itemsets, providing both a vertical and horizontal represen-
tation [28]. In their original form, FP-Trees can be utilized
to efficiently retrieve the supports for any itemset (given a
threshold).

Our algorithm requires maintaining two sets, A and B. For
each class c, we create two FP-Trees for each of A and B.
We name these TAc,T ∗Ac,TBc and T ∗Bc. The tree TAc contains
frequent patterns (and corresponding support counts) from all
data points of class c, which are covered by at least one
rule in A. The tree T ∗Ac contains the frequent patterns (and
corresponding support counts) from all the data points of class
c, which are covered by no rule in A. Note that TAc and
T ∗Ac form complements – any data point of class c is present
in exactly one of these two trees. The trees TBc and T ∗Bc

are defined similarly, again defined as complements of each
other. Except for TBc, the other trees are all vanilla FP-Trees,
that is, without any modifications to the original formulation
given by [32] . TBc on the other hand, is an augmented
data structure that we propose. We name this class of trees
Count FP-Trees. A Count FP-Tree can be created for any
reference set of itemsets (a given set of itemsets, which can be
possibly dynamic) and a given transaction database. Just like
a normal FP-Tree, it is a suffix tree storing the support of each
frequent pattern. However, unlike a normal FP-Tree, every
node also stores the number of itemsets (from the reference
set) contained by the frequent pattern. Note that we are talking
about the count of itemsets, and not count of transactions, i.e.
the support. This additional count for the reference set can
be initialized at any time – independent of the process of
construction of the tree. This implies that any FP-Tree can
be converted into a Count FP-Tree, ex post.

To construct our suite of FP-Trees, we start with empty
trees. We first take all the transactions in class c and add
them to the trees T ∗Ac and T ∗Bc. Now, we iterate over all rules
in Sc and move the subtrees rooted at the frequent pattern
nodes corresponding to these rules, to TBc. At the end of
this operation, all the trees adhere to their definition (from
the previous paragraph). At this time, we also initialize the
reference counts for TBc, using B as the reference set.

It is worth mentioning how deletion of rules from the

5

reference set B will affect the Count FP-Tree TBc. Upon
deletion of r from B, we find the node in TBc whose frequent
pattern matches with r. We then decrease the reference counts
for all nodes in the sub-tree rooted at this node. If the reference
count for any node falls to zero, we delete the sub-tree rooted
at that node (since no rule in B covers any transaction indicated
by the frequent pattern nodes in this sub-tree).

D. Overview of the Algorithm

The pseudocode of the RAPID is presented in Algorithm 1.
Based on USM [35], it starts with two sets. Set A starts as
the null set, and has elements added to it. Set B starts as S,
and has elements removed from it. Depending on whether A
or B is being updated, all the appropriate FP-trees need to be
updated. All elements in S are evaluated exactly once, and
either added to a set or removed from a set.

Algorithm 1 PSEUDOCODE FOR RAPID

1: Input: Objective f , domain X = ∪c(Sc, c), FP-trees TAc,
T ∗Ac, TBc, and T ∗Bc (for all c ∈ C)

2: A ← φ
3: B ← X
4: for r = (s, c) ∈ X do
5: a← max(f(A ∪ {r})− f(A), 0)
6: b← max(f(B \ {r})− f(B), 0)
7: γ ← Uniform(0, 1)
8: if γ < a

a+b then . if a and b are both 0, always do
this step

9: A ← A∪ {r}
10: TreeAdd(TAc, r)
11: TreeDelete(T ∗Ac, r)
12: else
13: B ← B \ {r}
14: TreeDelete(TBc, r)
15: TreeAdd(T ∗Bc, r)
16: end if
17: end for
18: return A (or equivalently B).

As previously mentioned, our core set optimization problem
involves using the USM algorithm [35], a linear time algorithm
(Θ(|S|) = Θ(k)). In each iteration of Algorithm 1, there are
two key parts – determining whether the current rule being
considered is to be added to the set A or to be deleted from
the set B, and then, actually adding or deleting the rule. For the
former, we improve over [5] by calculating only the difference
in the reward functions (we refer to these as ∆fi), incremental
effects of adding a single rule to a set. For example, the
terms ∆f1 and ∆f2 can be obtained in Θ(1) time by just
retrieving the length of the current rule. The difference terms
∆f3 and ∆f4 entail finding the overlap of the current rule
with all the other rules (in A or B) of the same class and
other classes, respectively. Consider the current rule r = (s, c)
and a candidate rule r′ = (s′, c′), the overlap of r and r′ is
simply the support of the itemset s∩s′ (constructed by taking
the intersection of all predicates in s and s′). The itemset

s ∩ s′ can have zero support, in case of invalid categorical
attribute combinations like {Country = US, Gender = Male}
and {Country = US, Gender = Female}. In case the support is
non-zero, we leverage the data structure G. Since, we took
a finer threshold (εG) in the construction of G, there is a
significant likelihood that s ∩ s′ is present in G. In that case,
we simply retrieve the threshold from G, in Θ(1) time. In
case the combined rule is not present in G, we take the global
mining support as the overlap value, since that is a weak upper
bound on the overlap. Since retrieval of support from the set
G is a Θ(1) operation, and we perform this retrieval Θ(k)
times, the calculation of ∆f3 and ∆f4 can be done in Θ(k)
time.

Computing the difference ∆f5 for A involves determining
whether r covers a previously unrepresented class in the
dataset, and similarly ∆f5 for B involves determining whether
r is the only rule covering some class in B – both are Θ(1)
operations. Computing ∆f6 involves calculating the size of
the incorrect cover of r. We use the data structures G and
{Fc} to obtain the sizes of the cover and correct cover for r
(since by construction of G and {Fc}, r is present in both).
The size of incorrect cover is simply the difference of both
these values. Since retrieval from G and {Fc} can both be
done in Θ(1) time, ∆f6 is obtained in Θ(1) time. Lastly, ∆f7
involves calculating the changes in size of the correct cover of
rule set A and B), on adding and deleting rule r from them,
respectively. We utilize our FP-Trees T ∗Ac and TBc for this
purpose. For A, ∆f7 will simply be the number of transactions
in the correct cover of r, which were previously not covered
by any rule in A. Hence, we can simply obtain the support
of transactions covered by r in T ∗Ac. To get ∆f7 for B, we
will simulate the rule deletion operation on TBc (as described
in Section IV-C), to get a count of transactions which will
be removed from TBc on deletion of r from B. Since both
of these calculations involve traversing the FP-Trees, they are
Θ(M) operations (where M is the depth of the tree). In all,
the time complexity of the objective function computation is
Θ(k +M).

After obtaining the values of the objective functions, the
set optimization algorithm either adds the rule r to A, or
deletes it from B. In both the cases, the FP-Trees are the
only data structures that we need to modify. In the former
case, we remove the sub-tree rooted at the frequent pattern
node of T ∗Ac and add it to TAc. In the latter case, we
follow the rule deletion on TBc (as described in the previous
subsection). Both of these operations take Θ(M) for each
such r. Since there are k such rules (and by formulation of
the set optimization algorithm, each rule is considered only
once), over the complete algorithm, the set operations will
take Θ(M × k) time.

E. Time Complexity of RAPID

The overall time complexity of RAPID involves time spent
in k iterations of Algorithm 1, along with time spent in
frequent itemset mining and construction of FP-trees. The
loop involves Θ(k2 + M · k + M · N) time. Time spent

6

on mining frequent itemsets & the FP-tree construction is
Θ(|C| · Tfim), but for most practical purposes |C| (number of
class labels) is a bounded constant. Ignoring this constant in
our asymptotic analysis, the time spent on these two operations
is Tfim . Therefore, the overall time complexity for RAPID is

Toverall = Θ(|R|2 +M · |R|+M ·N) + Tfim. (10)

F. Advantages of RAPID over IDS

RAPID has three major advantages over IDS.
Time Complexity: The first and motivating advantage of

RAPID over IDS is its time complexity, as can been seen
in Equations (9) and (10). Even if we assume small values
for M (number of features) and |Rmax| (largest R in all
iterations), IDS is still a Θ(k2 · N · logN) operation. Using
small values of ε can lead to large values of k, running into
thousand of rules, and most big data applications will require
running ML models on millions of data points. This limits IDS
to applications in datasets of modest sizes (as is also seen in
our experiments in Section V). On the other hand, the time
complexity of RAPID is dominated by the greater of k2 and
N ·M , which is much more manageable. Note that RAPID
involves multiple runs of the FIM algorithms (as many as |C|),
but modern implementations of FIM, like FP-Growth [28] are
highly optimized, and make up a negligible portion of the
running time of the entire algorithm.

Better Guarantees: RAPID leverages the USM algorithm
[35], this is a 1/2-approximate maximization algorithm. IDS on
the other hand is based on SLS, which is a 2/5-approximate
algorithm. Since f is positive, RAPID is likely to identify
decision sets which have higher values of the objective than
IDS. We demonstrate this qualitatively and quantitatively in
Section V.

Extensive Hyperparameter Search: Finally,
λ1, λ2, . . . , λ7 are hyperparameters that need to be specified
prior to invoking either IDS or RAPID. The authors in [5]
suggest using a coordinate ascent method to find parameters
that produced a decision set with the highest AUC (on the
validation set). The area of hyperparameter selection has been
extensively studied, and recent work has focused on Bayesian
methods for hyperparameter optimization [36]. An important
thing to note about these methods is that they repeatedly
call the primary routine during the hyperparameter search.
Since RAPID runs much faster in practice, it is possible to
use extensive hyperparameter optimization approaches with
it. We propose using the Tree-structured Parzen Estimator
Approach (TPE) [37] as implemented in [38] to find the
values of λ1, λ2, . . . , λ7.

V. EXPERIMENTS AND OBSERVATIONS

In this section, we compare RAPID with baselines on
public datasets. The comparison is performed against the
following alternatives. The first and primary comparator of
RAPID is IDS [5]. We took the implementation of IDS as
shared by the authors on their Git repository [30], without
any modifications. This is the closest possible representation
of the proposal in [5]. Next, we selected a number of machine

learning approaches which help us contrast the accuracy of
RAPID with these. There are Logistic Regression (LR) [39],
Decision Tree (DT) [18], Random Forest (RF) [40], Gradient
Boosting Machine (GBM) [41], [42] and a Neural Network
(NN) [43].

The choice of competing methods are motivated as follows.
RF, GBM and NN are black-box predictors that often observed
to be among the best off-the-shelf classifiers [3]. LR is a
well understood and popular classification method. LR has
good interpretability properties, in that, the feature coefficient
estimates represent the log-odds ratios of the presence of a
certain binary feature. But the classification rule of LR is a
linear function of all features in prediction. Such a rule does
not easily lend itself to easy interpretation. Additionally, LR
for a multi-class classification problem involves performing
multiple one-vs-all classification models. A binary DT pro-
vides a way to describe all the terminal nodes of the tree as
intersections of predicates. But a predicate in the DT may be a
not rule, leading to reduced interpretation of the rules when
multiple negations happen. Further, as argued in [5] and [44],
sets of decision rules are the most interpretable of all machine
learning models.

We analyze the performance of our algorithm on three
datasets. On the smallest dataset, we perform a relative com-
parison of IDS and RAPID to show that RAPID continues
to maintain the good interpretability properties of IDS. We
next show that the running time of RAPID in practice is
significantly better than that of IDS. Finally, we show that
RAPID continues to be close to the accuracies that can be
achieved by the four baselines LR, DT, RF and GBM. All
experiments are performed on a Linux machine with 61 GB
of memory and running an Intel Xeon E5-2686 v4 8 Core
Broadwell Processor with base frequency of 2.3 GHz. All
numbers, unless specified, are based on an average over 10
runs.

A. Datasets

The datasets used in [5] are not public, this means that
we are unable to test our proposal on these datasets. We
thus test our algorithms on some public datasets described
below [45]. For the baselines of LR, DT, RF and GBM, the
categorical input features are converted to one-hot encoding
before applying these methods.

Titanic dataset: This contains data for 1761 Titanic pas-
sengers and has been downloaded from a public GitHub
repository [30]. Each row represents one passenger. Each
passenger is characterized using three categorical features
namely passenger category, age category and gender. The
outcome variable denotes whether the person survived the
sinking of the Titanic. The classification task here involves
predicting which passengers survive the mishap.

US Census dataset: The data was collected as part of the
1990 census [45]. Each row is associated with an individual
and contains features such as age, income-level, occupation,
and so on. The dataset was originally proposed for clustering
task, but we artificially construct a prediction task from it. A

7

TABLE IV: The ratio of reward values for RAPID relative to
IDS. Higher value are preferred since we are maximizing the
objective. RAPID attains higher values than IDS across dif-
ferent support thresholds, including in the objective function.

Ratio Support = 10 Support = 20

f1RAPID/f1IDS 1.51± 0.08 1.42± 0.14

f2RAPID/f2IDS 1.31± 0.04 1.22± 0.06

f3RAPID/f3IDS 1.25± 0.01 1.02± 0.04

f4RAPID/f4IDS 1.25± 0.01 1.02± 0.04

f5RAPID/f5IDS 1.00± 0.00 0.80± 0.26

f6RAPID/f6IDS 1.18± 0.01 1.08± 0.02

f7RAPID/f7IDS 0.87± 0.03 0.81± 0.12

fRAPID/fIDS 1.25± 0.01 1.02± 0.04

TABLE V: Interpretability metrics of IDS and RAPID for
classification task on Titanic dataset.

Model Fraction Fraction Average Number Fraction of

Overlap ↓ Uncovered ↓ Rule Length ↓ of Rules ↓ Classes(∼ 1)

RAPID(10% supp) 0.08± 0.04 0.02± 0.01 1.71± 0.30 6.80± 2.10 1.00± 0.00

RAPID(20% supp) 0.11± 0.10 0.08± 0.11 1.63± 0.28 4.80± 1.93 1.00± 0.00

IDS(10% supp) 0.13± 0.05 0.01± 0.02 1.82± 0.23 10.5± 2.46 1.00± 0.00

IDS(20% supp) 0.22± 0.06 0.05± 0.06 1.86± 0.15 8.50± 2.17 1.00± 0.00

specific column is chosen to be intended prediction using the
remaining columns, here we try to predict whether a person
is married or not. This dataset has 2, 458, 285 data points, and
in the interest of having a challenging classification task, we
only use 7 features.

Mushroom dataset: The dataset is originally meant for
binary classification to determine if the species of mushroom
is poisonous or edible [45]. We formulated a multi-class
classification problem by creating a task to predict whether the
stalk surface above ring is fibrous, scaly, silky or smooth, the
output label has to be one of these four surface textures. There
are 8, 124 data-points and again to make the classification task
non-trivial we conducted experiments on 4 features out of 22
available features.

B. Interpretability of Models

Before looking at the quantitative properties of the inter-
pretability of the proposed model, let us look at the types of
decision rules generated by RAPID. Figure 2 is a decision set
of rules generated to predict survival of Titanic passengers.
RAPID generates 5 rules to predict whether a passenger
will survive or die on the Titanic based on three categorical
features. The average rule size is 1.8 and it has an accuracy
of 77%.

Fig. 2: An example output of RAPID run on the Titanic
dataset.

●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●

● ● ●

●

●

●

●
●

●
●

●

●

●

●
● ●

● ● ● ●

●

● ●

1e+03

1e+04

1e+05

0 10 20 30 40
Support (in %)

R
at

io
 o

f R
un

 T
im

es
 (

ID
S

 /
R

A
P

ID
)

Fig. 3: Run time comparison, IDS vs RAPID on the Titanic
dataset. The x-axis is the support threshold used in FIM, and
the y-axis marks the corresponding ratio of run times of IDS
and RAPID (in log scale). RAPID is four orders of magnitude
faster than IDS.

Next, let us look at the quantitative aspects of the inter-
pretability of IDS and RAPID. We first look at a number of
parameters which are important for interpretability. First, we
contrast the reward function values for IDS and RAPID in
Table IV. Note that both algorithms are run with the same
hyperparameters. We see that RAPID performs better on all the
interpretability metrics (f1, · · · , f5), and only slightly worse
on one of the two accuracy metrics (f7). From the last row
of Table IV, we see that the relative value of the combined
objective function (equation (1)) is on an average 25% more
with a support of 10% and 2% more with a support of 20%.
This observation is a natural implication of USM (used in
RAPID) having better approximation guarantees than SLS
(used in IDS).

Five metrics for measuring interpretability are defined and
presented in [5]. These are (1) Fraction Overlap (extent of
overlap between pairs of rules in a decision set); (2) Fraction
Uncovered (data points which are not covered by any rule in
decision set); (3) Average Rule Length; (4) Number of Rules;
(5) Fraction of Classes (fraction of the class labels in the data
predicted by at least one rule in decision set). For the first
four of these, a lower value is better; the last metric should be
close to 1. Table V presents these metrics (along with standard
deviations) for IDS and RAPID for two support levels on the
Titanic dataset. The hyperparameters for RAPID and IDS were
chosen using TPE and coordinate ascent, respectively. As we
can see, the first four terms are similar across the two methods,
after accounting for the error bounds. The last metric is 1 for
both methods.

C. Run Time Experimentation

On the Titanic dataset, we perform run time comparisons
for a range of support values. These are presented in Figure 3
(based on a single run per support value). At a support

8

threshold of 20% on the Titanic dataset, there are only 24
candidate decision rules from which to select the decision set,
even then RAPID is about 2, 700 times faster than IDS. For
support thresholds between 1 and 10%, we see that RAPID is
more than 10, 000 times faster than IDS. Lower threshold for
the support is important to enable us to detect rare but high
accuracy rules which may help reliably detect a small, but
pure subset of the data, leading to better recall in rare classes.

TABLE VI: Run time of RAPID, IDS, LR, RF and GBM, in
seconds. All times are averaged over 10 runs (presented along
with the standard deviation).

Titanic Census - Sample Proportions Mushroom

Model 1/100 1/10 1

RAPID(10% supp) 0.10± 0.01 1.40± 0.03 8.87± 0.06 85.84± 0.42 0.62± 0.17

RAPID(20% supp) 0.09± 0.01 0.90± 0.01 7.83± 0.04 79.13± 0.27 0.56± 0.09

IDS(10% supp) 525.03± 90.03 TO∗ TO∗ TO∗ TO∗

IDS(20% supp) 147.82± 8.00 TO∗ TO∗ TO∗ TO∗

LR 0.01± 0.00 0.03± 0.01 0.42± 0.01 4.45± 0.17 0.09± 0.03

DT 0.01± 0.00 0.01± 0.00 0.06± 0.00 1.61± 0.13 0.02± 0.01

RF 0.03± 0.01 0.08± 0.01 0.50± 0.01 15.40± 0.52 0.20± 0.02

GBM 0.11± 0.01 0.59± 0.01 6.97± 0.16 110.26± 1.47 0.88± 0.05

NN 0.96± 0.17 9.26± 2.11 84.55± 18.88 404.16± 97.76 12.78± 1.62

∗timeout – exceeded execution time-limit of 1 hour per run

In Table VI we perform multiple runs of these methods for
Titanic, Mushroom and different samples from Census (with
sampling ratios of 1/100, 1/10 and 1) datasets. We see that
IDS times out (with a reasonable time-limit of one hour) for
all samples of the Census dataset, while RAPID has run times
which are comparable to even the baseline machine learning
models. For the full Census dataset, RAPID is faster than
GBM and NN, and takes about 5x as much time as RF. RAPID
can be used to analyze millions of data points within minutes,
and promises to be applicable in many realistic settings. Note
that the classifiers LR, DT, RF, GBM and NN were used with
default configuration settings as implemented in the Python
library scikit-learn [46]. The NN architecture had four
hidden layers with 8, 16, 16 and 8 nodes, respectively.

It is prudent to ask if RAPID is trading running time for
memory requirement, given that it creates four FP-Trees for
each class label. In our experiments, for the largest dataset,
RAPID had a memory footprint of around 2GB for data which
takes approximately 640MB of disk space. Thus showing that
the memory requirements for the FP-Trees are manageable,
that is, without orders of magnitude increase in memory
requirements we gain four orders of magnitude in time.

D. Classification Accuracy

Next, we compare the classification performance of RAPID
with IDS, LR, DT, RF, GBM and NN. Tables VII and VIII
demonstrate the Area under the ROC curve and F1 score
metrics for different classifiers on the prediction tasks within
the three datasets. Since the classification task on Mushroom
dataset is multi-class, we report micro-averaged results on
running one-vs-all classifications for all classes. Similar to [5],
we used the precision of a rule r = (s, c) (on the class c) as
the probability that a given data point is assigned class c by the
rule r. The scores reported are averaged over 10 replicates, and

TABLE VII: AUC-ROC metric of RAPID, IDS, LR, RF and
GBM on various datasets. All values averaged over 10 runs
(presented with the standard deviation).

Titanic Census - Sample Proportions Mushroom

Model 1/100 1/10 1

RAPID(10% supp) 0.76± 0.03 0.78± 0.01 0.78± 0.01 0.79± 0.01 0.87± 0.02

RAPID(20% supp) 0.74± 0.04 0.75± 0.01 0.76± 0.01 0.76± 0.02 0.86± 0.01

IDS(10% supp) 0.76± 0.03 TO∗ TO∗ TO∗ TO∗

IDS(20% supp) 0.73± 0.02 TO∗ TO∗ TO∗ TO∗

LR 0.77± 0.01 0.76± 0.01 0.78± 0.01 0.79± 0.01 0.88± 0.00

DT 0.78± 0.01 0.78± 0.01 0.79± 0.01 0.79± 0.01 0.89± 0.00

RF 0.78± 0.01 0.78± 0.01 0.80± 0.01 0.81± 0.01 0.89± 0.00

GBM 0.78± 0.01 0.79± 0.01 0.80± 0.01 0.80± 0.01 0.89± 0.00

NN 0.77± 0.02 0.79± 0.01 0.80± 0.01 0.80± 0.01 0.88± 0.01

∗timeout – exceeded execution time-limit of 1 hour per run

TABLE VIII: F1-score of RAPID, IDS, LR, RF and GBM
on various datasets. All values averaged over 10 runs and
presented along with standard deviation.

Titanic Census - Sample Proportions Mushroom

Model 1/100 1/10 1

RAPID(10% supp) 0.86± 0.02 0.73± 0.01 0.72± 0.01 0.72± 0.01 0.64± 0.02

RAPID(20% supp) 0.85± 0.03 0.72± 0.01 0.72± 0.01 0.72± 0.01 0.64± 0.01

IDS(10% supp) 0.84± 0.01 TO∗ TO∗ TO∗ TO∗

IDS(20% supp) 0.82± 0.01 TO∗ TO∗ TO∗ TO∗

LR 0.87± 0.01 0.74± 0.01 0.72± 0.02 0.70± 0.01 0.64± 0.01

DT 0.87± 0.01 0.73± 0.01 0.72± 0.02 0.72± 0.01 0.64± 0.01

RF 0.87± 0.01 0.73± 0.01 0.72± 0.01 0.72± 0.01 0.64± 0.01

GBM 0.88± 0.01 0.74± 0.01 0.73± 0.01 0.72± 0.01 0.64± 0.01

NN 0.87± 0.02 0.74± 0.02 0.73± 0.01 0.73± 0.01 0.64± 0.01

∗timeout – exceeded execution time-limit of 1 hour per run

presented along with the standard deviation. In terms of both
metrics, the performance of RAPID is marginally superior to
IDS, and close to LR, DT, RF, GBM and NN, on the Titanic
dataset. We note that IDS timed out on Census and Mushroom
datasets. However, as per [5], since our results are comparable
to (albeit marginally inferior) those of RF, GBM and NN,
RAPID can be expected to be superior, on the margin, to IDS
on these two datasets as well. This finding is to be expected
since RAPID is sacrificing accuracy to ensure that the model
is also interpretable, consistent with [5].

VI. CONCLUSION

In this work, we propose the RAPID algorithm, which is a
scalable approach to building interpretable ML models. The
state of the art algorithm, IDS, has a number of appealing
properties – it presents a flexible objective function that incor-
porates both explainability (or interpretability) and accuracy,
and operates naturally on categorical data (which is common
to many applications). However, the proposed algorithm in
IDS fails to scale to anything beyond datasets of modest
sizes. Since most common problems require building machine
learning models on millions to billions of data points, IDS is
limited in its applicability. RAPID on the other hand has all the
good properties of IDS, while also easily scaling to millions
of data points. RAPID also has better guarantees compared
to IDS, and more extensive hyperparameter search can be
performed, further boosting accuracy. There are multiple lines
of future work that can be explored. RAPID can be extended
to regression, by changing the objective functions, while still

9

leveraging the proposed novel data structures. Another promis-
ing avenue of research can be to improve the maximization
algorithm by leveraging specific properties of the objective
function.

REFERENCES

[1] G. Shmueli, “To explain or to predict?” Statistical science, vol. 25, no. 3,
pp. 289–310, 2010.

[2] J. M. Hofman, A. Sharma, and D. J. Watts, “Prediction and explanation
in social systems,” Science, vol. 355, no. 6324, pp. 486–488, 2017.

[3] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–
3181, 2014.

[4] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[5] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets:
A joint framework for description and prediction,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2016, pp. 1675–1684.

[6] Q.-s. Zhang and S.-C. Zhu, “Visual interpretability for deep learning: A
survey,” Frontiers of Information Technology & Electronic Engineering,
vol. 19, no. 1, pp. 27–39, 2018.

[7] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in ICCV, 2017, pp. 618–626.

[8] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in ICML, 2017.

[9] Q. Zhang, Y. Nian Wu, and S.-C. Zhu, “Interpretable convolutional
neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8827–8836.

[10] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys (CSUR), vol. 51, no. 5, p. 93, 2018.

[11] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining. ACM, 2016, pp. 1135–1144.

[12] ——, “Anchors: High-precision model-agnostic explanations,” in AAAI
Conference on Artificial Intelligence, 2018.

[13] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
“Comparison-based inverse classification for interpretability in machine
learning,” in Information Processing and Management of Uncertainty
in Knowledge-Based Systems. Theory and Foundations, J. Medina,
M. Ojeda-Aciego, J. L. Verdegay, D. A. Pelta, I. P. Cabrera, B. Bouchon-
Meunier, and R. R. Yager, Eds. Cham: Springer International Publish-
ing, 2018, pp. 100–111.

[14] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GPDR,”
Harv. JL & Tech., vol. 31, p. 841, 2017.

[15] B. Kim, R. Khanna, and O. Koyejo, “Examples are not enough, learn
to criticize! Criticism for interpretability,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems, ser.
NIPS’16. USA: Curran Associates Inc., 2016, pp. 2288–2296.

[16] J. Duan, Z. Zeng, A. Oprea, and S. Vasudevan, “Automated generation
and selection of interpretable features for enterprise security,” in 2018
IEEE International Conference on Big Data (Big Data). IEEE, 2018,
pp. 1258–1265.

[17] W. W. Cohen, “Fast effective rule induction,” in Machine learning
proceedings 1995. Elsevier, 1995, pp. 115–123.

[18] L. Breiman, Classification and regression trees. Routledge, 2017.
[19] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[20] B. Letham, C. Rudin, T. H. McCormick, D. Madigan et al., “Inter-

pretable classifiers using rules and bayesian analysis: Building a better
stroke prediction model,” The Annals of Applied Statistics, vol. 9, no. 3,
pp. 1350–1371, 2015.

[21] D. Bertsimas, A. Chang, and C. Rudin, “Orc: ordered rules for classi-
fication a discrete optimization approach to associative classification,”
2012.

[22] R. L. Rivest, “Learning decision lists,” Machine learning, vol. 2, no. 3,
pp. 229–246, 1987.

[23] R. U. Kiran, A. Kotni, P. K. Reddy, M. Toyoda, S. Bhalla, and M. Kit-
suregawa, “Efficient discovery of weighted frequent itemsets in very
large transactional databases: A re-visit,” in 2018 IEEE International
Conference on Big Data (Big Data), Dec 2018, pp. 723–732.

[24] S. Buffett, “Candidate list maintenance in high utility sequential pattern
mining,” in 2018 IEEE International Conference on Big Data (Big
Data), Dec 2018, pp. 644–652.

[25] P. Clark and T. Niblett, “The CN2 induction algorithm,” Machine
learning, vol. 3, no. 4, pp. 261–283, 1989.

[26] B. L. W. H. Y. Ma and B. Liu, “Integrating classification and association
rule mining,” in Proceedings of the fourth international conference on
knowledge discovery and data mining, 1998.

[27] U. Feige, V. S. Mirrokni, and J. Vondrak, “Maximizing non-monotone
submodular functions,” SIAM Journal on Computing, vol. 40, no. 4, pp.
1133–1153, 2011.

[28] C. Borgelt, “Frequent item set mining,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 2, no. 6, pp. 437–456,
2012.

[29] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’93. New York, NY, USA: ACM, 1993, pp. 207–216.

[30] H. Lakkaraju. (2017) Interpretable Decision Sets.
Online, Accessed 18-August-2019. [Online]. Available:
https://github.com/lvhimabindu/interpretable decision sets

[31] U. Feige, V. S. Mirrokni, and J. Vondrák, “Maximizing non-monotone
submodular functions,” SIAM J. Comput., vol. 40, no. 4, pp. 1133–1153,
Jul. 2011.

[32] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’00. New York,
NY, USA: ACM, 2000, pp. 1–12.

[33] R. Sinha, D. Singal, P. Maneriker, K. Chawla, Y. Shrivastava, D. Pai, and
A. R. Sinha, “Forecasting granular audience size for online advertising,”
in Proceedings of the ADKDD’18. ACM, 2018.

[34] C. Borgelt, “An Implementation of the FP-growth Algorithm,” in Pro-
ceedings of the 1st international workshop on open source data mining:
frequent pattern mining implementations. ACM, 2005, pp. 1–5.

[35] N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz, “A tight linear
time (1/2)-approximation for unconstrained submodular maximization,”
SIAM Journal on Computing, vol. 44, no. 5, pp. 1384–1402, 2015.

[36] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos,
and K. Leyton-Brown, “Towards an empirical foundation for assess-
ing bayesian optimization of hyperparameters,” in NIPS workshop on
Bayesian Optimization in Theory and Practice, vol. 10, 2013, p. 3.

[37] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, 2011, pp. 2546–2554.

[38] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in Science Conference. Citeseer, 2013,
pp. 13–20.

[39] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

[40] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[41] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[42] ——, “Stochastic gradient boosting,” Computational Statistics & Data
Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[43] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[44] C. Molnar, Interpretable Machine Learning.
https://christophm.github.io/interpretable-ml-book/, 2018,
https://christophm.github.io/interpretable-ml-book/.

[45] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

10

